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ABSTRACT 
Distributed acoustic sensing is well-suited for monitoring 
underground power cables by measuring vibration signals 
along the cable. These signals can be used to detect 
mechanical activities that pose a risk to the infrastructure. 
We present an approach that performs this detection using 
deep neural network models. The models are evaluated on 
data from an installation site in an urban area that contains 
potentially disturbing signals from streets and construction 
sites. To assess the generalizability of the models they are 
evaluated on data from an installation site that is different 
to the sites used for training. Experimental results show 
that the models detecting excavator digging and 
jackhammer activity achieve an accuracy of 97.7% and 
98.1%, respectively. 

KEYWORDS 
Distributed Acoustic Sensing, Deep Neural Networks, 
Power Cable Monitoring  

INTRODUCTION 
Distributed acoustic sensing (DAS) systems have a wide 
range of applications, above all real-time monitoring of 
power cables or infrastructure in oil and gas industry [1]. 
DAS uses a fiber optic cable (FOC) that is installed along 
the asset to capture the signal of vibrations near the cable. 
Buried infrastructure like power cables and pipelines can 
be damaged by third party activities. Using DAS, it is 
possible to detect and classify the third party intrusion (TPI) 
e.g., mechanical activities around buried assets and alarm 
on the threat [2]. 

Detecting TPI is a challenging task because the DAS data 
of mechanical activities depend on several factors like 
ground conditions and the tools that are used. Furthermore, 
signals that look similar to TPI signals caused by other 
activities should not trigger an alarm. To overcome these 
challenges an advanced machine learning method, namely 
deep neural networks (DNN), is used. A DNN can learn to 
detect signals of TPI activities based on data that were 
recorded in the past. Unlike threshold based approaches 
which depend  on signal strength, DNNs take advantage of 
pattern recognition to classify activities. 

Detecting TPI activities using DAS data and machine 
learning techniques has been proposed in previous works. 
In [3] a speaker is placed near a FOC and used to play back 
the acoustics of various activities including the sound of 
jackhammer in action. A convolutional neural network 
(CNN) is used to classify the signals. The work in [4] 
compares the performance of different machine learning 
algorithms to detect and classify excavator activities. To 
process the data, horizontal and vertical Sobel filters are 
applied. In [5] the Rayleigh backscattering traces are 
transformed to a gray scale image and used as the input to 
a CNN. A small CNN is used to achieve a high training 
speed. The work in [6] proposes a deep dual path network 

to classify TPI activities based on the spatial time-
frequency spectrum. Data from seven classes are used, 
including excavator operation. The data are collected at 
three different railway lines.  

In this paper, we present our approach to detect TPI 
activities using DNNs and DAS. Our system is installed in 
an urban area, where the power cables along with the fiber 
cable are buried under diverse active areas, including 
streets, bridges and construction sites. The DNNs we 
evaluate in this paper are trained using only data from 
installation sites that are different to the installation site 
used for evaluation. This approach is chosen in order to 
test our method in a scenario in which the detection system 
is used at a new installation site without adapting the DNNs 
to that site. We focus on two types of TPI namely: excavator 
digging and jackhammer activity. Since both are performed 
by heavy machines they may cause real damage to the 
power cable.  

BASIC CONCEPTS 
Distributed Acoustic Sensing 
DAS is a technique to measure acoustic and vibration 
signals along a FOC using a single measurement device. 
When a laser pulse is sent into the fiber it is partially 
reflected along the fiber which results in a return signal that 
is measured. Depending on the application different 
wavelengths of the return signal are of interest, as can be 
seen in Fig. 1. For DAS the coherent Rayleigh scattering is 
used which is stimulated by strain changes in the fiber that 
are caused by acoustic and vibration activities. Like in a 
radar system the position of the vibration event is estimated 
by the traveling time of the laser pulse and the 
backscattered Rayleigh signal from the fiber. 

 
Fig. 1: Distribution of the return signal when a laser 
pulse is sent into a FOC 
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Deep Neural Networks 
CNNs are machine learning tools especially well-suited for 
image classification tasks. A CNN consists of layers; if it 
has many layers it is named a DNN. Each of the layers gets 
the output of a previous layer as input and transforms it into 
an output. In our case the input to the first layer is an image 
of a signal captured by the DAS and the output of the last 
layer is a number between 0 and 1 that can be interpreted 
as the probability that the image contains the signal of a 
TPI activity. The transformation that a layer performs is 
defined by parameters which are set via training the DNN. 
In the training phase the DNN gets a large amount of signal 
images together with the information whether the image 
contains a TPI activity or not. The data are used to optimize 
the parameters in a way that the DNN minimizes the 
classification error on the training data. The optimization is 
done via a gradient descent algorithm. 

EXPERIMENTAL SETUP  
At the test site in this investigation the AP Sensing phase 
DAS model N5225B is used to interrogate the FOC. The 
DAS data are recorded with a repetition rate of 5000 Hz 
and a spatial sampling along the fiber of 5 m. The sensor 
cable is an extra FOC deployed close to the power cable. 
The high voltage cable and the FOC are buried in a depth 
of 0.5 to 2 m. 

The data recorded by the DAS are so-called phase data. 
Instead of directly using this data as input to the DNN a 
preprocessing step is done by applying a fast Fourier 
transform (FFT) on the phase data and aggregating the 
energy in specific frequency ranges. Fig. 2 illustrates the 
processed data along a 12 km long fiber in an urban area. 
The colormap of Fig. 2 is also used for the other images 
showing DAS data in this paper. 

The experiments  focus on the detection of two different TPI 
classes, namely excavator digging and jackhammer 
activity. For each of these classes a DNN model is trained 
to classify whether an image of a signal shows the TPI 
activity or not. In a second step the trained DNN models 
are evaluated. Details of the training phase and the 
evaluation phase are given in the following sections. 

Training 
The DNN used for the TPI detection is not trained using 
data from the evaluation site but by feeding the DNN with 
DAS data measured at different installations. The various 
installations used for training the DNN differ in ground 
conditions as well as in depth of burial of the FOC. The goal 
of using diverse training data is to train a DNN that has a 
high generalizability and can therefore be used at a new 
installation site without retraining. 

In Fig. 3 example signals from one of the installation sites 
used to collect training data are shown. The excavator 
digging signal has a characteristic pattern that is caused by 
the excavator shovel hitting the ground and moving through 
the soil. In comparison the signal corresponding to 
jackhammer activity looks very different. When the 
jackhammer has contact to the ground it creates a strong 
signal, when the jackhammer is lifted and has no contact to 
the ground the vibration is not transmitted to the FOC 
resulting in gaps in the pattern. 

 

  
Fig. 3: Example signals from a site used for training 
corresponding to excavator digging (left) and 
jackhammer activity (right) 

Fig. 2: Visualization of DAS data from the installation site used for evaluation 
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Fig. 4: Example signals from the evaluation site not 
corresponding to TPI activities 

 

Evaluation 
The data for evaluating the models are collected at a DAS 
installation site that is different to the installation sites of the 
training data. Fig. 2 shows the visualization of some data 
recorded by the DAS along the 12 km long fiber. Because 
the FOC is located in an urban area there are many strong 
signals along the cable making it more challenging for the 
models to correctly distinguish between the signals that 
correspond to TPI activity and the signals that correspond 
to no TPI activity. The black box on the signal visualisation 
in Fig. 2 marks an excavator digging close to the beginning 
of the cable. It can be seen that along the fiber there are 
signals with a higher intensity than the excavator signal, 
indicating that a simple threshold based approach is not 
sufficient to detect TPI activities. 

The data that contain no TPI activity are collected by 
randomly selecting 2500 images during eight hours. We 
call a sample containing no real TPI signal a negative 
sample. Fig. 4 shows example signals from the installation 
site used for evaluation. Although the signals do not 
correspond to TPI activities they do contain patterns 
making it challenging for the models to correctly classify the 
signals as belonging to the negative class. 

 

Fig. 5: Signal of excavator digging (left) and image of 
the excavator (right) from the evaluation site 

The excavator digging data are collected at two different 
positions along the fiber, at the first position eight minutes 
of digging is performed, at the second position 14 minutes 
of digging is performed. From these data 2500 images are 
randomly selected. In Fig. 5 an example of an excavator 
digging signal from the evaluation site can be seen. 
Compared to the excavator digging signal in Fig. 3 from a 
site used for training, the background noise is on a higher 
level. This difference between the training data and the 
evaluation data illustrates that it is important to train a 
model that can generalize well. 

The data that contain jackhammer activity are collected at 
one position with a duration of 14 minutes. From these data 
2500 images are randomly selected. Fig. 6 shows a signal 
of jackhammer activity from the evaluation site. In 
comparison to the example jackhammer activity signal from 
the training site in Fig. 3 there are more gaps in the pattern 
and the pattern is wider. 

For both cases, excavator digging and jackhammer activity, 
the DNN models are evaluated by using acoustic 
background data (negative data) with excavator data and 
jackhanner data, respectively. This paper assesses the 
performance of the excavator model and the jackhammer 
model separately. Therefore, the excavator DNN model is 
not evaluated with the jackhammer data and the 
jackhammer DNN model is not evaluated with the 
excavator data. 

To assess the performance of the models we use the 
metrics accuracy, precision and recall which are defined in 
the following. Let 𝑇𝑇𝑇𝑇 denote the number of true positives, 
i.e. images that are correctly classified as showing a TPI 
signal, 𝐹𝐹𝑇𝑇 denote the number of false positives, i.e. images 
that are incorrectly classified as showing a TPI signal, 𝑇𝑇𝑇𝑇 
denote the number of true negatives, i.e. images that are 
correctly classified as showing no TPI signal, and 𝐹𝐹𝑇𝑇 
denote the number of false negatives, i.e. images that are 
incorrectly classified as showing no TPI signal. The 
preceding definitions assume that an image with the signal 
of a TPI activity corresponds to the positive class and an 
image that contains no TPI signal corresponds to the 
negative class. However, it is also possible to switch the 
roles of the positive and negative class. In this case the 
definitions of 𝑇𝑇𝑇𝑇, 𝐹𝐹𝑇𝑇, 𝑇𝑇𝑇𝑇 and 𝐹𝐹𝑇𝑇 change accordingly. 

 

Fig. 6: Signal of jackhammer activity (left) and image of 
the jackhammer (right) from the evaluation site 
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Tab. 1: Results of excavator and jackhammer model 

 

Accuracy is defined as the number of correctly classified 
images divided by the number of all images: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇  . 
 

Precision is defined as the fraction of images classified as 
positive that are correctly classified: 

𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇  . 
 

Recall is defined as the fraction of images from the positive 
class that are correctly classified: 

𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇  . 
 

RESULTS  
The results of the excavator DNN model are shown in Tab. 
1a. The accuracy of the model is 97.7%. For the negative 
data the model achieved a precision of 98.9% and a recall 
of 96.6%. For the excavator data the precision is 96.6% and 
the recall is 98.9%. 

Tab. 1b shows the results of the jackhammer DNN model. 
The accuracy of the model is 98.1%. For the negative data 
the model achieved a precision of 98.3% and a recall of 
97.9%. For the jackhammer data the precision is 97.9% 
and the recall is 98.3%. 

In our evaluation the excavator DNN model and the 
jackhammer DNN model have a comparable classification 
performance. Considering that the models have been 
evaluated on data from an installation site different to the 
installation sites of the training data the good results 
indicate that the models are generalizing well. 

The results of this paper can be used as a starting point for 
further research. In this paper we assessed the 
performance of models that are trained without using data 
from the evaluation site. Future work may evaluate how 
much a customized model which incorporates data from 
the actual evaluation site in the training dataset boosts the 
performance over a generalizing DNN model. 

 

CONCLUSION 
In this paper we have presented our approach to detect TPI 
using deep neural networks in combination with distributed 
acoustic sensing. We trained DNN models on data from 
multiple DAS installation sites and applied the trained 
models to data measured at a different installation site 
located in an urban area. We evaluated a model that is 
trained to detect excavator digging and another model that 
is trained to detect jackhammer activity, achieving 
accuracies of 97.7% and 98.1%, respectively. The results 
demonstrate that DAS measuring technology in 
combination with DNN models can accurately detect 
mechanical threats to underground power cables deployed 
in noisy urban areas. Future work may investigate how the 
classification performance can be improved by using a 
model that is adapted to the evaluation site. 
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GLOSSARY 

CNN: Convolutional Neural Network 
DAS: Distributed Acoustic Sensing 
DNN: Deep Neural Network 
FFT: Fast Fourier Transform 
FOC: Fiber Optic Cable 
TPI: Third Party Intrusion 
 

a) Excavator model 
Class Precision [%] Recall [%] 
Negative 98.9 96.6 
Excavator 96.6 98.9 

Overall accuracy: 97.7% 
 

b) Jackhammer model 
Class Precision [%] Recall [%] 
Negative 98.3 97.9 
Jackhammer 97.9 98.3 

Overall accuracy: 98.1% 
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