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This paper proposes an approach to process the response of a distributed temperature sensor using a nonlinear
autoregressive with external input neural network. The developed model is composed of three steps: extraction of
characteristics, regression, and reconstruction of the signal. Such an approach is robust because it does not require
knowledge of the characteristics of the signal; it has a reduction of data to be processed, resulting in a low process-
ing time, besides the simultaneous improvement of spatial resolution and temperature. We obtain total correction
of the temperature resolution and spatial resolution of 5 cm of the sensor. © 2018 Optical Society of America
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1. INTRODUCTION

Distributed temperature sensors (DTS) are important in mon-
itoring large structures such as hydroelectric generators [1],
dams [2,3], oil and gas platforms [4], subway tunnels [5],
mines, and warehouses [6]. Temperature interrogation provides
fundamental information about the current operating condi-
tions of these structures, ensuring safety for employees in such
locations [7].

Performance of DTS systems is determined by temperature
resolution, characterized by how close the measured tempera-
ture provided by the sensor is the actual temperature. The per-
formance is also given by the spatial resolution, defined as the
smallest heated region that can be accurately detected by the
sensor. Both spatial resolution (less than 1 m [8]) and temper-
ature resolution (below to 3°C [9]) are strongly influenced by
several factors, such as signal attenuation, dispersion, local
losses, and laser signal pulse width [6].

Many authors have proposed different solutions in order to
improve the performance of DTS systems [10–15]. However,
the presented solutions generally improve either the spatial res-
olution or the temperature resolution, being scarce solutions to
improve both simultaneously. For example, one can mention
the use of signal processing techniques that focus exclusively
on improvements in signal-to-noise ratio and uncertainties in
temperature resolution [16–18]. Besides these reported works,
[19,20] used a neural network to process the Brillouin time-
domain trace to extract the temperature information along

the fiber after the data acquisition process. However, the
processing was applied directly on the signal containing the
temperature information, which is nonlinear as Brillouin scat-
tering and is influenced by several factors intrinsic to the acquis-
ition process that distort the signal such as attenuation and
dispersion.

In the results presented in [12], the signal processing
technique was applied specifically to improve the spatial reso-
lution of DTS equipment, with the objective of identifying
temperature variations in regions smaller than 1 m. The algo-
rithm used is based on the principle that signals with excessive
and possibly erroneous details have a high total variation.
Consequently, the reduction of the total signal variation tends
to be a close match of the original signal, as it removes un-
wanted signal information, while preserving important details
such as edges. Thus, the regularization by total variation allows
preserving edges while smoothing noise in flat regions, even
with low signal-to-noise ratio. The main advantage of the pro-
posed method is the ability to correctly reconstruct hot regions
on the optical fiber with dimensions up to 15 cm [12].

As an improvement, the present work proposes the use of a
nonlinear autoregressive with an external input (NARX) neural
network to provide accurate temperature measurements with a
spatial resolution of 5 cm. The proposed model also presents a
new approach to solve the problem of the large amount of data
generated by a DTS, allowing a faster acquisition, or even in
real-time (temperature) acquisition, depending on the desired
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application. The validation of the model was accomplished
considering a temperature profile with different sizes of the
heated regions in the optical fiber.

This paper is organized as follows: Section 2 shows the fun-
damental aspects of distributed temperature sensing and con-
cepts of a NARX neural network. Section 3 presents the details
of the developed model. Section 4 presents the results obtained
by numerical simulations, where, after applying the proposed
model, we reconstruct the sensor response signal for hot regions
with only 5 cm of the resolution measured along the entire
length of the fiber. Finally, the conclusions are presented in
Section 5.

2. THEORETICAL ASPECTS

A. Distributed Temperature Sensor
DTS systems are devices for temperature measurement in large
structures that use optical fibers as a sensor element, which
means that no transducers are required along the entire length
of the fiber to carry out measurements [5,21].

The principle of interrogation consists in coupling light with
high power density into the core of the fiber in order to generate
nonlinearities. One of the nonlinearities generated in this pro-
cess is known as spontaneous Raman scattering (SRS), which
has strong dependence on the temperature of the medium in
which it was generated [22]. Therefore, by detecting the SRS
and performing the processing of this signal, it is possible to
raise the temperature profile along the entire length of the fiber,
as shown in Eq. (1) [10]:
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where R�T � and R�T ref � are the backscattering ratios (ampli-
tudes of signal components) measured at the arbitrary section
of the sensing fiber and the reference fiber spool maintained at a
known temperature T ref , respectively. v 0 is the wavenumber
separation from the input wavelength. h is the Planck’s con-
stant. The constant c is the speed of light in the free space;
meanwhile, k is the Boltzmann’s constant, and z is the position
in the fiber. The spatial localization of the backscattered light is
determined by the previously known propagation speed inside
the fiber [10].

It is important to emphasize that DTS systems can carry out
measurements at several points along a fiber optic cable, re-
specting its spatial resolution. In addition, such sensors make
use of the inherent advantages of optical fibers such as low loss,
electromagnetic immunity, and signal multiplexing, among
others [5,6,23].

B. Nonlinear Autoregressive Method with
External Input
Artificial neural networks (ANN) are a set of learning models
inspired by biological neural networks, which are mainly used
to estimate a function dependent on a large number of inputs
that are usually unknown. They are composed by a number of
interconnected neurons. Each neuron receives an input signal
from other neurons or external stimuli, processes that signal
and produce a transformed output signal to other neurons
or external outputs.

The characteristics of an ANN algorithm enable ANN to
learn from examples and then to generalize examples that have
never been seen before. ANN can easily identify and learn
interconnected patterns between input data sets and corre-
sponding target values. After training the data, ANN can be
applied to a set of new independent input data to predict
an outcome [24].

ANN learning basically consists of modifying the weights of
the connections between the neurons, where the initial weights
(synapses) are modified iteratively, by an algorithm. There is
supervised learning, presented by a training set, consisting of
inputs and corresponding desired outputs. And the unsuper-
vised learning, which occurs when the network updates its
weights without the use of desired input–output pairs and
without indications about the adequacy of outputs produced
[25]. In this work, a supervised model is used.

A recurrent dynamic neural network is one that contains
feedback synaptic connections and delays that allow the flow
of information between neurons of distinct layers. Recurrence
is a type of short-lived memory mechanism that allows the
network to recall information from a recent past. While delays
provide exact values of past information at the current instant,
feedback loops perform some kind of processing (filtering) on
past information [26].

An important class of recurrent dynamic neural network are
NARX, where the actual system outputs serve as input to the
model. The dynamic behavior of the NARX model is described
by [27]

y�n� � f �y�n − 1�,…, y�n − d y�; u�n�, u�n − 1�,…,

u�n − du � 1��, (2)

where u�n� and y�n� represent, respectively, the input and
output of the model at time n, while du < 0 and du ≤ d y
are the orders of input memory and output memory.

There are many applications for the NARX network. It can
be used as a predictor, to predict the next value of the input
signal [28], in standard classification problems [29–31], in on-
line pattern recognition [32], and intelligent controller design
[33]. It can also be used for nonlinear filtering, in which the
target output is a noise-free version of the input signal [34].
In addition, NARX can be used in the modeling of nonlinear

Fig. 1. NARX recurrent neural network architecture.
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dynamic systems [35–37], being the output fed back to the
input of the feedforward neural network as part of the standard
NARX architecture because the true one is available during net-
work training [24,27]. Or there is the possibility of creating a
series-parallel architecture in which the true output is used
instead of feeding back the estimated output [34].

Figure 1 shows the architecture of NARX.
In the context presented, this work sought to explore the

ability of NARX to deal with nonlinear models and make
the sensor response as accurate as possible.

3. DEVELOPED MODEL

In DTS systems, the signal that carries the temperature infor-
mation is due to a nonlinearity, making it difficult to simulta-
neously analyze all the parameters that interfere with the
temperature measurement.

In this context, the motivation of this work was to develop a
model to improve the response of DTS systems without chang-
ing the internal structure of the same, thus exploring the NARX
neural networks’ ability to deal with nonlinear models.

The proposed model for improving the sensor response con-
sists of three main parts: the pre-processing of the data, the
regressor, and the reconstruction of the signal.

A. Pre-processing of the Data
The data used for training and validation of NARX is the ex-
perimental data obtained from a commercial DTS model AP
Sensing N4385B. The DTS used on experiments has a spatial
resolution of 1 m, acquisition time of 30 s, sample interval
down to 15 cm, and temperature resolution of 0.04°C for fibers
up to 2 km. In addition, the DTS unit employs a semiconduc-
tor laser with a wavelength of 1064 nm with maximum average
output power of 17 mW, 0.2 numerical aperture, and a beam
waist diameter of 50 μm.

The experiment to generate the temperature profiles con-
sisted of measuring heating regions in fibers of different sizes
provided by a thermal bath LAUDA ECO RE415G model,
with stabilized temperature at 50°C, using the DTS to estimate
the temperature along the fiber, as shown in Fig. 2.

Experimental data for training the algorithm composed a
202 × 89 matrix, where the first column represents the length
of the fiber in meters, the 2–44 columns are the temperatures
for different widths of the hot region in the fiber estimated by
the DTS equipment, and the remaining columns are, respec-
tively, reference temperatures (actual temperature). Therefore,

44 curves can be lifted that compare the actual temperature and
that estimated by the DTS equipment.

Considering the algorithm proposed here intends to
improve significantly the temperature and spatial resolution
of measured data provided by a DTS, the first approach was
training the NARX algorithm as a “calibration” process of
the model.

For this training, just a few characteristics have been selected
from each curve, such as the spatial resolution of the sensor
W dts, the actual region heated in the fiber W ref , the maximum
temperature measured by the DTS H dts, the actual maximum
temperatureH ref , and the minimum temperatures given by the
DTS and the real temperature, Bdts and Bref , respectively.W dts

and W ref are the FWHM for each curve. Instead of using the
“entire” curve in the analysis, selecting main characteristics of
each curve drastically reduces the amount of data to be used as
NARX input.

Figure 3 illustrates the selected feature selection.
With the selection of features, the data were drastically

reduced to only a 44 × 6 array, where the first three columns
are the NARX input, and the last three columns are the output
of NARX. The new data are shown in Table 1.

B. Regression Using NARX
Once the selection of characteristics was carried out, the next
step was the regression that consisted in determining the
weights of the NARX model, so that the error between the out-
put variables (actual temperature) and the regressor input (sen-
sor response) is minimized. However, the solution should
correct not only the difference between the temperature esti-
mated by the sensor and the actual temperature but also the
spatial resolution.

In this context, we use a NARX as a regressor for the prob-
lem in question for three main reasons: first, a NARX handles
well with nonlinear models, presenting an output with very lit-
tle noise when compared with that of nonrecurrent neural net-
works [38,39]. Second, it is not necessary to know the factors
that interfere with the sensor performance. And, finally, the
prediction step is O�n�2, with n equivalent to the number

Fig. 2. Experimental setup used to obtain temperature profiles.
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Fig. 3. Example of the selection of characteristics of one of the
curves with a region heated in the fiber of 100 cm.

Research Article Vol. 57, No. 20 / 10 July 2018 / Applied Optics 5861



of elements of the input sequence in the model (input+output
−delay ⇒ n � 3� 3 − 1 � 5). Without doing the character-
istic extraction step, the complexity of the model is O�N �2.
Now, when doing the feature extraction step, the complexity
becomes O�n�2, with n � 5 ≪ N . It is concluded that the fact
of including a characteristic extraction step generates a drastic
reduction in computational cost because this depends asymp-
totically on the number of inputs in the quadratic form model.

C. Reconstruction of the Signal
Finally, the reconstruction of the signal was performed from the
NARX output. That is, with the new values ofW c,Hc , and Bc ,
we reconstruct the hot spot on the fiber, which is our region of
interest in the fiber. Equation (3) represents how reconstruction
of the signal was performed:

g � R
�pj −W c

2
,
pj �W c

2
, d
�
× �Hc − Bc� � Bc , (3)

where R represents a rectangular pulse function over the inter-
val corresponding to the spatial resolution estimated by the
NARX model, and p is the location in the fiber in the central
reference position j. The value of pj is found from the value of
H dts, that is, when

pj � d �max�H dts��, (4)

where d is the vector corresponding to the position in the fiber,
and W c and Hc are the spatial resolution and temperature
resolution corrected by the NARX model, respectively.

The reconstructed signal is presented in Section 4.

4. RESULTS AND DISCUSSION

Concerning the improvement of the DTS spatial resolution
and temperature as well, we have considered the experimental
data obtained from a commercial DTS as input to the NARX,
and the NARX output (target) was the actual temperature that
the DTS equipment should estimate. The samples were divided
into training (70% of samples), validation (15% of samples),
and test (15% of samples) data. The training data samples
are provided to the neural network model during training,
and the system is adjusted according to its error. The validation
data is used to measure network generalization and to halt
training of the neural network when the generalization stops
improving, where MATLAB software was used during simula-
tions with NARX.

In order to correctly detect hot regions in the fiber with
dimensions of the order of 5 cm, it is sufficient to know the
region in the fiber that such event occurred and the maximum
temperature point in that region.

We use the output of the NARX model, which corresponds
to these parameters (see feature selection in Fig. 3), and recon-
struct the original DTS sensor signal for all temperature
profiles.

Figure 4 shows that the proposed method processes the sen-
sor response with the smallest possible error at a spatial reso-
lution of 5 cm. We conclude that the NARX neural network
model proposed here is more efficient than using total variation
deconvolution in detecting small hot spots on the fiber. A
significant improvement when compared with the result
presented in a previous work (see Fig. 9) [12].

The result shown in Table 2 presents the robustness of the
proposed model, correcting simultaneously not only the tem-
perature resolution of the sensor but also the spatial resolution.
However, it should be noted that the null error obtained in the
temperature resolution is mainly due to the available measured
data and tests performed. Different experimental schemes or
signal processing methods would result in diverse experimental

Table 1. NARX Input (W dts, Hdts, Bdts) and Output
(W ref, H ref, Bref)

W dts H dts Bdts W ref H ref Bref

W dts,1 H dts,1 Bdts,1 W ref ,1 H ref ,1 Bref ,1
W dts,2 H dts,2 Bdts ,2 W ref ,2 H ref ,2 Bref ,2

..
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Fig. 4. Fully corrected DTS sensor response using NARX as a
regressor for a fiber hot spot of only 5 cm.

Table 2. Error in Sensor Response Before and After
Application of NARX for 10 Data Curves

Size Hot Spot Error1
a Error2

b Error3
c

5 cm 0.983 25.20°C 4.553 × 10−7
10 cm 0.943 24.00°C 6.806 × 10−7
15 cm 0.857 21.60°C 6.124 × 10−7
20 cm 0.802 20.20°C 1.623 × 10−6
25 cm 0.754 18.20°C 1.026 × 10−6
30 cm 0.705 16.50°C 2.871 × 10−7
35 cm 0.654 14.90°C 5.401 × 10−7
40 cm 0.622 14.10°C 1.193 × 10−4
45 cm 0.610 12.40°C 1.122 × 10−4
50 cm 0.616 11.60°C 1.512 × 10−6

aError1-Error in spatial resolution without NARX;
bError2-Error in temperature resolution without NARX;
cError3-Error in spatial resolution with NARX.
Note: The error null obtained in the temperature resolution is mainly due to

the available measured data and tests performed.

5862 Vol. 57, No. 20 / 10 July 2018 / Applied Optics Research Article



databases with different temperature resolutions, as discussed
in [20,40].

In addition, the proposal presents a strong practical appli-
cation, given the nature of the data processing performed by the
DTS equipment, because these sensors usually have kilometers
of extension, which correspond to a huge amount of data to be
processed (nearly 1 TB/Day) [21].

Therefore, the reduction in the amount of data performed
through the selection of characteristics constitutes a new
approach to significantly improve the performance of DTS sys-
tems compared with traditional techniques that use the com-
plete sensor response to provide the processed signal [12].

Another advantage here is the fact that there are no losses
due to compression of the data.

Table 2 shows the temperature profiles processed individu-
ally. However, in order to analyze the generality of the proposed
model, we consider the situation where there are many temper-
ature peaks with different widths. Figures 5 and 6 show the
result obtained for this case and the obtained error, respectively.

In addition, other advantages of the method proposed in
this paper are the possibility of application in any commercial
DTS model, without the need for hardware changes that re-
quire modification in the optoelectronic circuit, which usually
presents a high level of complexity besides high cost.

In summary, with a spatial resolution obtained of 5 cm, it
favors the expansion of applications of the use of DTS systems
to other areas focused on the thermal mapping of medium and
small structures, such as pumps for water supply systems and
motors in industrial plants [12].

5. CONCLUSIONS

In this work, we explored the ability of a NARX neural network
to deal with nonlinear models to improve the response of a dis-
tributed temperature sensor. The proposed model was imple-
mented in three basic steps, starting with the selection of sensor
signal characteristics, next applying the regression using NARX,
and, finally, performing the signal reconstruction. The method
application led to excellent results by complete correction of the
sensor’s temperature, while the spatial resolution reached 5 cm.

A total of 44 different experimental temperature profiles
available were analyzed, with different temperature peaks
and heated regions in the fiber, thus enabling model validation.
With the selection of features applied to the signal, the data size
was dramatically reduced, consequently improving the overall
processing time. It means to speed up the data acquisition pro-
cess or even perform this action in real time. Thus, the extrac-
tion of characteristics from a DTS measured signal presented in
this work constitutes a new proposal of how the problem of
storing large amounts of data generated by DTS sensors can
be solved.

Therefore, the developed model is robust with the potential
to be implemented and process the response of DTS systems,
without changes in the internal structure of the equipment.

Funding. Fundação de Amparo à Pesquisa e Inovação
do Espírito Santo (FAPES); Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq);
PETROBRAS.
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